Define Validation Rules
Test Data
Help
Rule Types
- Range Check: Verify values fall within min/max bounds (numeric)
- Regex Pattern: Match values against regular expression patterns
- Uniqueness: Ensure all values in column are unique
- Not Null: Verify no missing/empty values
- Data Type: Validate values match expected type (number, string, date, email)
- Length Check: Verify string length within bounds
- Whitelist: Value must be in allowed list
- Blacklist: Value must not be in forbidden list
- Custom Function: JavaScript expression for custom validation
Regex Examples
- Email:
^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$
- Phone:
^\d{3}-\d{3}-\d{4}$
- Zip Code:
^\d{5}(-\d{4})?$
- URL:
^https?://[^\s]+$
- Date (YYYY-MM-DD):
^\d{4}-\d{2}-\d{2}$
Use Cases
- Data Quality: Ensure data meets quality standards before processing
- ETL Pipelines: Validate data during extract-transform-load processes
- Form Validation: Define and test form validation rules
- Data Migration: Verify data integrity during migrations
- API Testing: Validate API response data formats
Custom Functions
Write JavaScript expressions that return true/false. Available variables:
value - The current cell value
row - The entire row as an object
index - The row index (0-based)
Examples:
value > 0 && value < 100
value.length >= 3
row.age >= 18 && row.status === 'active'
Export & Templates
- Export Results: Download validation results as CSV with pass/fail status
- Save Template: Save your rule set for reuse
- Export Rules: Download rules as JSON for version control or sharing
- Import Rules: Load previously exported rule sets