Synthetic Data Generator

Generate realistic test datasets with customizable properties

Dataset Configuration

Column Configuration

Options

Help

Data Types
  • Integer: Whole numbers (e.g., 1, 42, 100)
  • Float: Decimal numbers (e.g., 3.14, 42.5, 99.99)
  • String: Text values (random alphanumeric strings)
  • Name: Realistic person names
  • Email: Valid email addresses
  • Date: Random dates within a range
  • Boolean: True/False values
  • Category: Random selection from predefined categories
  • UUID: Unique identifiers
Distributions
  • Uniform: Equal probability across range
  • Normal: Bell curve distribution (requires mean and std dev)
  • Exponential: Decay distribution (requires lambda)
  • Poisson: Count data distribution (requires lambda)
  • Binomial: Success/failure distribution (requires n and p)
Use Cases
  • Testing: Generate test data for application development
  • Demos: Create sample datasets for presentations
  • Privacy: Replace sensitive data with synthetic data
  • Training: Generate data for machine learning experiments
  • Prototyping: Mock data for UI/UX development
Preset Schema

The customer preset generates a realistic customer dataset with:

  • Customer ID (UUID)
  • Name (Realistic person names)
  • Email (Valid email addresses)
  • Age (Normally distributed, mean=40, std=15)
  • Join Date (Random dates from 2020-2024)
  • Purchase Amount (Exponentially distributed)
  • Category (Bronze, Silver, Gold, Platinum)
  • Is Active (Boolean with 80% true rate)
Export Formats
  • CSV: Comma-separated values, compatible with Excel and most tools
  • JSON: JavaScript Object Notation, array of objects format
  • Copy: Copy current view to clipboard for pasting elsewhere